
Long-range elastic-mediated interaction between nanoparticles adsorbed on
free-standing smectic films

I. N. de Oliveira,1 M. S. S. Pereira,1 M. L. Lyra,1 C. Filgueiras,2 C. Sátiro,2,3 and Fernando Moraes2

1Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
2Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB, Brazil

3Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, 55296-901 Garanhuns, PE, Brazil
�Received 10 June 2009; revised manuscript received 19 August 2009; published 14 October 2009�

We determine the elastic-mediated interaction between colloidal nanoparticles adsorbed on the surface of
free-standing smectic films. In contrast with the short-range character of the elastic-mediated force between
particles adsorbed on smectic films supported by a solid substrate, the effective force acquires a long-range
character in free-standing films, decaying with the particles distance R as slow as 1 /R. We also discuss the
dependence of the effective interaction potential on the surface tension � and film thickness. We show that it
decays as 1 /� in the regime of large surface tensions and becomes independent of the film thickness at a
characteristic surface tension.
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Long-range interactions emerge in correlated liquid crys-
tal systems when their fluctuation modes are modified by the
imposition of boundary conditions �1�. In particular,
fluctuation-induced interactions are assumed to play an im-
portant role in a great variety of phenomena, such as wetting
transitions �2�, aggregation of guest particles �3�, and thin
film stability �4,5�. However, a distinct interaction takes
place in these systems as a response to elastic distortions in
the liquid-crystalline order when colloidal particles are im-
mersed in them. These elastic-mediated interactions between
colloidal particles have been identified as the main mecha-
nism to the formation of several self-assembly organized
structures, such as periodic lattices and anisotropic clusters
�6–9�.

The effective interaction between guest particles in liquid
crystal hosts has been extensively investigated by different
experimental �10–14� and theoretical techniques �15–19�. In
nematic samples, the addition of spherical colloidal particles
induces the formation of topological defects in the nematic
order that depend on the strength and direction of the anchor-
ing at the colloid surface �12,16�. For a strong homeotropic
anchoring, a guest particle behaves itself as a radial hedge-
hog defect. An additional hyperbolic hedgehog defect
emerges in order to annihilate the topological charge in the
nematic environment �12�. Such pair of particle-defect con-
stitutes an elastic-dipole which minimizes the elastic energy
associated with the nematic order distortions. As a conse-
quence, an effective dipolelike interaction takes place be-
tween colloidal particles. Its attractive or repulsive nature
depends on the distance and the relative direction of the elas-
tic dipoles �12�. On the other hand, an effective quadrupolar-
like interaction arises between immersed particles when the
colloidal liquid crystal dispersions are confined in a planar
cell �14�, as well as when a strong tangential anchoring is
induced at the colloid surface �11�. Colloidal interactions at
the nematic-air interface have been shown to be of a new
type as compared to the bulk interaction. In this case, the
director deformations caused by the particles lead to distor-
tions of the interface and thus to capillary attraction �20�.

In free-standing smectic films, experimental investiga-

tions have revealed that soft and hard colloids modify the
smectic layer structure around them �21–23�. In particular, it
was observed the formation of a decorated meniscus sur-
rounding the adsorbed colloids and an effective attractive
interaction emerges as the menisci overlap �21�. Such effec-
tive interaction has been associated with smectic layer undu-
lations. Further, the addition of guest particles affects other
physical properties of smectic films, such as the transition
temperature �24� and photonic response �25�. In ferroelectric
smectic membranes, the interaction between the inclusions is
influenced by the rearrangement of topological defects and
anchoring on the inclusion boundary �26�. Theoretical stud-
ies have predicted that pointlike deformations of smectic lay-
ers promote an elastic-mediated interaction between colloid
particles in bulk samples �27�, as well as in membranes and
in thin films supported by a solid substrate �28,29�. In the last
case, the predicted effective force decays exponentially with
the separation between the colloids.

In this work, we determine the effective elastic-mediated
interaction between colloidal nanoparticles adsorbed on the
surface of a free-standing smectic film. We will be particu-
larly interested in analyzing the dependence of the interac-
tion on the film thickness l and on the distance R between the
colloidal nanoparticles. Films under distinct surface tension
regimes will be considered. We will reveal the long-range
character of the elastic-mediated force which contrasts with
the short-range nature of this force in smectic films sup-
ported by a solid substrate. Such force shall play a key role
in the formation of self-assembled colloidal structures in the
surface of free-standing films.

Free-standing smectic films can be described as a stacking
of two-dimensional equidistant liquid layers surrounded by a
gas. The coupling between the film and the gas environment
is represented by a surface tension which reduces the smectic
fluctuations close to the film surface, providing a quasi-long-
range order. In the harmonic approximation, the free energy
associated with the deformation of the smectic layers is
given by �30�
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The first term in Eq. �1� represents the energy cost asso-
ciated with bulk deformations of the smectic order while the
second term is the surface contribution. Here, u�r=r� ,z� is
the layer displacement at the point r and l is the film thick-
ness. K and B are the elastic constants associated with the
bending and the compression of smectic layers, respectively.
� is the surface tension which penalizes variations in the area
of the film surface. A characteristic surface tension can be
defined from the elastic constants of the smectic phase, �c

=�KB, which delimits the regimes of large ����c� and
small ����c� surface tensions.

In order to investigate the effects associated with the ad-
sorption of colloidal particles on free-standing smectic films,
an additional term in the free energy is included to represent
the energy cost associated with deformations in the smectic
order due to colloids adsorbed on the film surface

HA = − �
a0

L

d2rf�r��u�r�,l� , �2�

with the total free energy being HT=HS+HA. f is the colloid
load that represents the normal stress at the film surface due
to the colloid adsorption. In particular, f is assumed to
present an action radius of a few nanometers, with a magni-
tude that overcomes the energy cost to undulate the surface
layer �28�. L is the transverse size of the film and a0 is a
cutoff length of the order of the molecular diameter.

Actually, there are additional contributions to the film free
energy associated with the presence of the adsorbed colloids.
One of them is related to fact that a colloid disturbs the
homogeneous distribution of the liquid crystal molecules in
its surrounding. When two colloids are close enough, the
superposition of these disturbed regions leads to the reduc-
tion of the free energy in the interface which can be inter-
preted as an effective interaction between the particles. An-
other physical mechanism which leads to an effective
interaction between the colloids is due to the topological
defects they induce in the nematic order that usually result in
a dipole-dipole-like coupling. Although the coupling of the
colloids with the interface can possible involve additional
terms, such as capillary deformations and induced smectic-C
order, we will restrict our following analysis to the effective
interaction between the colloids resulting from the pressure
field they exert on the film surface.

The additional pressure field on the film surface due to the
colloids adsorption disturbs the smectic order. Therefore the
layer displacement that minimizes the elastic free energy has
to be obtained from the Euler-Lagrange equation

B
�2u

�z2 = K�2u , �3�

which must satisfy the following boundary conditions

��u�z = l� − B� �u

�z


z=l

= − f�r�� , �4�

��u�z = 0� + B��u/�z�z=0 = 0. �5�

Performing some partial integrations and assuming that
the layer deformations are null at the film holder, the total
free energy can be expressed as �28�

HT = −
1

2
�

a0

L

d2r�f�r��u�r�,l�� . �6�

The elastic free energy depends on the deformation in-
duced by the colloidal particles at the film surface, which is
represented by the load f . In fact, the layer displacement u�r�
is distorted by the adsorbed particles at z= l. Using the
Green’s function formalism, we can define the smectic layer
displacement as

u�r�,z� = �
a0

L

d2r̄�f�r̄��G�
r� − r̄�
,z�� . �7�

It is straightforward to show that the Green’s function in
Fourier space is given by

Gq�z� =
1

q2�c
� cosh�q2�cz� + � sinh�q2�cz�

2� cosh�q2�cl� + �1 + �2�sinh�q2�cl�
� , �8�

where �= �� /�c� and �c=�K /B. The inverse transform re-
sults in

G�R,z� = �
2�/L

2�/a0 qdq

2�
Gq�z�J0�qR� . �9�

Here, R= 
r�− r̄�
 and J0�qR� is the Bessel function of zeroth
order. The total elastic free energy can then be expressed as
HT= 1

2 �U1,1+U2,2�+U1,2, where

Uij = −� d2rd2r̄ f i�r��f j�r̄��G�
r� − r̄�
,l� . �10�

Uii is the self-energy associated with the ith colloid �i
=1,2�, while U1,2 represents the elastic-mediated interaction
energy between the adsorbed colloids which is a function of
the film thickness and the distance between the particles. The
colloid load was written as f�r��= f1�r��+ f2�r��, with f i
presenting a small action radius. It can be represented as
f i�r��= pi�
r�−r�

i 
�, where pi is non-null for distances
smaller than a cutoff length ai of the order of a few nanom-
eters and r�

i is the position of the ith colloid. As the Green’s
function does not change significantly over distances smaller
than ai, one can write the elastic-mediated interaction energy
as U1,2=−P1P2G�R ,z= l�, where Pi=�0

aipi�r�2�rdr repre-
sents the effective load of the ith colloid particle adsorbed on
the film surface and R is the distance between the colloids.
The problem of computing the elastic-mediated interaction is
reduced to the problem of finding the Green’s function in
real space. Such formalism was previously used to investi-
gate the interaction between colloidal particles adsorbed on a
smectic film deposited in a solid substrate which suppresses
the smectic layer displacement close to it �28�. In such case
the Green’s function reads

Gq
s�z� =

sinh�q2�cz�
q2��c cosh�q2�cl� + � sinh�q2�cl��

, �11�

and it leads to an elastic-mediated force that decays expo-
nentially with the distance between the colloids. However,
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one should notice that the presence of a solid substrate
makes the Green’s function regular in the regime of small
wave vector ondulations. It is such regular behavior at small
q that is responsible for the exponential decay of the inter-
action energy at large interparticle distances. For free-
standing films the picture is quite distinct. The Green’s func-
tion is singular at small wave vectors, diverging as 1 /q2.
Such singularity has a strong impact on the elastic-mediated
interaction, as we will describe below.

In what follows we use typical experimental parameters:
K=10−11 N, B=2.5�106 N /m2 ��c=�KB=5�10−3

N /m�. Also, we consider identical colloidal particles �P1
= P2= P�, with an effective load P=5 K, a cutoff length of
the order of the molecular diameter of a0=4 Å, layer spac-
ing d=30 Å and a typical film diameter of L=4 mm. In Fig.
1 we plot the effective elastic-mediated interaction energy as
a function of the distance between the particles, for fixed film
thickness and surface tension. Both cases of a film deposited
on a solid substrate Us and a free-standing film Uf are
shown. The distance between the particles is scaled by a
typical distance given by �l�c. The interaction is mainly at-
tractive in both cases, except by an oscillatory character of
Us at large distances that is not visible in the scale shown
�28�. Notice that the exponential decay of the interaction on
films supported by a solid substrate contrasts with the very
slow decay of the interaction energy on a free-standing film.
The effective force between the particles is reported in Fig. 2
for the same set of parameters given above. For small inter-
particles distances, the interaction force depicts a similar 1 /R
decay for both surface tension regimes. For a film supported
by a solid substrate, the interaction crosses over to an expo-
nentially decaying force in the regime of large interparticle
distances. This crossover takes place at larger force values
for thinner films and weker surface tension. On the other
hand, the slow 1 /R decay persists in free-standing films. Ac-
tually, the asymptotic form of the interaction force can be
analytically computed by noticing that its long distance be-
havior is determined by the singular form of the Green’s
function at small wave vectors. A straightforward calculation
results in 
F
= P1P2 / �4��R�. This asymptotic form is shown
in Fig. 2 as a solid line.

We also analyze the dependence of the effective interac-
tion potential on the film thickness. The main results are
shown in Fig. 3. It slowly converges to a constant value that
is proportional to 1 / ��+�c�. The potential is strictly thick-
ness independent at the characteristic surface tension �=�c,
exhibiting opposite trends for large and small surface ten-
sions. Finally, we report the dependence of the interaction
potential on the surface tension. Figure 4 shows the typical
1 /� decay at large surface tensions which holds for different
interparticle distances and film thicknesses. In particular, a
single 1 /� law holds for large interparticle distances irre-
spective to the surface tension regime.

In conclusion, we determined the elastic-mediated inter-
action between colloidal nanoparticles adsorbed on the sur-
face of a free-standing smectic film. We demonstrated that
this interaction has an attractive long-range character, with
the force decaying asymptotically as slow as 1 /R. Such long-
range character contrasts with the exponentially decaying
force mediated by the smectic elastic deformations of a film
supported by a solid substrate. These opposite scenarios were
shown to be related to the role played by the long wave-
length elastic deformations on films under distinct surface
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FIG. 1. The elastic-mediated interaction potential versus their
scaled distance. Both cases of a film anchored by a solid substrate
�Us—dashed line� and a free-standing film �Uf—solid line� are
shown. Physical parameters used were �=25�10−3 N /m and l
=300 nm. The fast asymptotic exponential decay of Us contrasts
with the slow logarithmic convergence of Uf which is typically of
the order of 10kBT at room temperature.
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FIG. 2. The amplitude of the elastic-mediated force as a func-
tion of the scaled interparticle distance. The force in the film an-
chored by a solid substrate �Fs—diamonds� crosses over from a 1 /R
decay at small distances to an exponential decay at large distances.
The force in free-standing films �Ff—circles� keeps the slow 1 /R
decay at large distances. The solid line represents the analytical
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tension conditions. A solid substrate regularizes the charac-
teristic Green’s function in this regime, thus leading to a
short-ranged interaction energy. On the other hand, the sur-

face tension term acting on both surfaces of a free-standing
film leaves a singular contribution of long wavelength elastic
modes which is responsible for the long-range nature of the
effective interaction between the nanoparticles. This elastic-
mediated force is longer ranged than the Coulomb force be-
tween charged nanoparticles. Therefore, it shall be the pre-
dominant long distance interaction between nanoparticles
adsorbed in the surface of free-standing smectic films, thus
playing an important role in the formation of self-assembly
structures in these systems. The here reported force can, in
principle, be directly measured experimentally using laser
tweezers �11,31� or combined magneto-optical techniques
�10,32�. It would be interesting to have such measurements
performed in order to probe the long-range character of this
elastic-mediated interaction.
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